Skeletal Systems

General Properties of Skeletons

• Connective tissues important in support
 - Collagen/tropocollagen molecules
 • Molecular rope
 • Pack closely together due to glycine content
 • Not elastic so good for support

Endoskeletons and Exoskeletons

• Composite materials made of fibers embedded in mineral salts or organic polymers
 - Ex Bone

• Skeletons must withstand forces
 - Compression
 - Tension
 - Shear
 - Torsion
 - Stiffness
 - Strength

Endoskeletons and Exoskeletons

• Cost benefit analysis
 - Exoskeletons
 - Stiffer but not as strong
 - Provide excellent support for muscle based movement
 - Increase in strength requires increase in weight
 - Animal must molt to grow – skeleton limits space for growth (predation hazard)

Endoskeletons and Exoskeletons

• Cost benefit analysis
 - Endoskeletons
- No limit on space for growth (no molting necessary)
- Allows larger body size
- Soft tissues prevent skeletal damage
- Excellent protection for internal organs
 • (heart/lungs)

Hydrostatic Skeletons

- Hydrostatic support from body fluid between cells
- *Hydrostatic* -of or relating to fluids at rest or to the pressures they exert or transmit
- Water is incompressible and transmits force in all directions
 - apply force to the fluid and it will be transferred to the body wall
 - Like a soft hose stiffening when filled with water

Hydrostatic Skeletons

- A hydrostatic skeleton manipulated by muscles can cause hydraulic movement
 - Ex. Squeeze a balloon at one end
 - Cnidarians (hydrazoa and anthozoa) rely on hydrostatic support and hydraulic movement
 - Bivalve molluscs use hydraulic mechanism to extent foot.

Hydrostatic Skeletons

- Longitudinal and Circular muscles create peristalsis as the exert pressure on the hydrostatic skeleton
- See animation
- Good for burrowing or crawling
 - Circular wave push front end forward
 - Longitudinal contractions broaden the worm making it push against the burrow

Hydrostatic Skeletons
• Advantages
 - Add little weight to the animal
 - Little energy needed to carry them around

• Disadvantages
 - Precise, local movements difficult
 - Contraction in one region stretches muscles in another region
 - Punctures of body immobilize the animal

Hydrostatic Skeletons

• Cnidarians
 - Hydra – fluids in the gastrovascular cavity act as a skeleton
 - 3 layers epidermis – mesoglea – gastrodermis. Collagen fibers pass spirally around the body
 - Perisarc- a delicate exoskeleton secreted by some cnidarians (chitinous)
 - Anthozoans – corals secrete an exoskeleton of calcium carbonate

Hydra Cell Types

Platyhelmintheyes

• Connective tissue and interstitial fluid are the main support
• Remember acoelomates!
• Body covered by one cell layer of fiberous basal lamina
• Cestoda and Trematoda have snyctal epidermus called a tegument (absorption)
 - Provides body support, resists digestion.
Triploblastic Body Design
based on Hickman Fig. 14-3

Nematoda

- One cell thick outer layer that secretes multilayered cuticle
- Spiral layers of collagen fibers
- High pressure up to 120 mm Hg
- Provides strong hydroskeletal support

Annelida

- Flexible cuticle secreted by epidermis
- Circular and longitudinal muscles in the cell wall
- Septa divide the animal into metameres
- Septa allow different pressures in different metameres
- Creates ability to have more extensive movements

Animals with Exoskeletons

- Arthropoda
 - Have a rigid jointed exoskeleton
 - Trichogen cells produce setae

Cuticle
• mainly chitin
 - Layers
 • Endocuticle, exocuticle, epicuticle
 - Hardness determined by sclerites (plates of cuticle)
 - tough, flexible, glucose-amine polymer
 - stiffened with calcium carbonate in crustaceans
 - permeable but resists chemicals
 - waterproofed with waxes in insects
• protection, support, muscle attachment

Exoskeleton Structure

Molting

• Controlled hormonally (ecdysone hormone)
 - Epidermis secretes molting fluid
 - Epidermis secretes new cuticle (procuticle)
 - Molting fluid dissolve the old cuticle
 - Animal swallows air or water and enlarges, splitting the old cuticle
 - New cuticle is hardened with sclerites
 - Animation http://www.aloha.net/~smgon/sutures.htm

Mollusca

• External, rigid, calcerous shell in most for protection of the soft body.
• Shell produced by mantle
 - 3 layers
 • Outer = perisostracum (conchiolin)
 • Middle= prismatic layer
 • Inner = nacerous layer (alternating layers of calcium and proteoglycan layers)

Animals with Endoskeletons

• Porifera
 - Body of 2 layers
- Pinacocyte layer on outside and lining cavities
- Choanocyte layer on inside
- Gelatinous mesohyl in between
- Ameobocytes secrete spongin (spongocytes) and spicules (sclerocytes)

Porifera

Echinodermata

- Integument of thin ciliated epidermis
- Underlying connective tissue dermis
- Dermis produces ossicles
- Ossicles made from Mg and Ca carbonate crystals bound together by collagen
- Sea Urchins (asteroidea) Test (shell) made of platelike ossicles to create a hemispherical endoskeleton
- Spines (in sockets and movable) project from the ossicles

Chordata

- Endoskeletal notochord
- Semi-rigid rod extending the length of the body
- Made from large fluid filled cells encased in concentric sheathes of connective tissue
- Rigidity from hydrostatic pressure in the cells

Chordata

- Notochord replaced by vertebral column
- Vertebral skeleton
 - 2 parts
 - Axial skeleton (skull, vertebral column, ribs)
Appendicular skeleton supports girdles (pectoral and pelvic)

- Articulated skeleton (contains joints)
- Sutures (immovable joints)
- Bones held together at movable joints by tendons and ligaments
- Ends of bones coated with aticular cartilage to reduce wear
- Joints lubricated with synovial fluid

Chordata

- Appendages
 - Structure reflects mode of locomotion
 - Convergence
 - Bat (hand) vs Bird wing

Chordata

689-691

- Functions of the Vertebral Skeleton
 - Supporting the load of the body
 - Amphibian skeletons project laterally and bear less weight whereas bird and mammal skeletons are positioned under the body and bear more of a load
 - Arched for supporting the weight of visceral below it. (like a suspension bridge)
 - Load Bearing
 - Muscles and skeleton work together
 - Bones bear shear and torsion, muscles bear load
 - Ex jumping on femur bone and bowing

- Protection
- Mineral storage

Chordata

188

- Functions of the Vertebral Skeleton
 - Protection
 - Operculum protects gills
 - Skull protects brain and inner ear
 - Sockets protect eyes
 - Ribs protect heart and lungs
Chordata

188

• Functions of the Vertebral Skeleton
 - Mineral Storage
 • Calcium and Phosphorous reservoir
 • Calcium – parathormone and calcitonin

Chordata

• Vertebrate Skeletal Materials
 - Cartilage
 • Connective tissue formed by chondrocytes
 - Matrix of collagen fibers and proteoglycans joined by hyaluronic acid, with chondroitin sulfate and keratan sulfate

Chordata

• Vertebrate Skeletal Materials (190)
 - Bone
 • Long bone
 - Hollow tube (diaphysis) with expanded hollow end (epiphysis)
 - Bone marrow in cavity
 • Outer surface – periosteum
 - Attachment of tendons and ligaments
 • Compact vs spongy bone
 • Nutrient canals, osteons, haversian systems
 • Lacunae, osteocytes, canaliculi

Chordata

- Vertebrates have skeleton of fibrous connective tissue cartilage or bone
- Bone formation
 • Endochondral bone formation
 - (1) Fibrous connective tissue
 - (2) cartilage
- (3) osteocytes and bone matrix

- Dermal (membrane) bone
 - (1) fibrous connective tissue
 - (2) bone

Chordata

- Visceral and Somatic components
 - Gill arches
 - Formerly filter feeding structures