The Pancreas
Why all the fuss?
The Pancreas and Digestive Functions
Pancreatic Secretions

Pancreatic HCO₃⁻ (bicarbonate) secretion
- Secretin is a hormone
 - Secretin from S-cells in duodenum in response to H⁺
 - To pancreas by blood, stimulates bicarbonate secretion by duct cells
 - Bicarbonate flows to small intestine
 - HCO₃⁻ + H⁺ = H₂O + CO₂
 - Negative feedback onto S-cells to decrease amount of secretin secreted

Pancreatic enzymes basics
- Enzymes:
 - Proteases – trypsin, chymotrypsin, carboxypeptidase
 - Lipases, ribonucleases
- Trypsinogen (in.) converted to trypsin by cell-bound enterokinases.
- Trypsin then converts zymogens to active enzymes.

Development
Pancreatic removal
- Mammal – diabetes results
- Bird – No diabetes! Why
- Pancreas becomes more discrete as we move from lower vertebrates up to primates.
- Diverse in macroscopic structure!
- Controlled by parasympathetic and sympathetic inputs but - not primary controls.

The Endocrine Pancreas
Cell types
Alpha cells (20%)– glucagon
Beta cells (75%)– insulin
Delta (5%) - somatostatin
F cells (?) - pancreatic peptide

Chemistry

- Insulin - 51 AA Protein
- Banting and Best
- Sanger (structure)
- Synthesis

Insulin Structure

- Protein
- Alpha and beta chains
- 2 DS bonds

Synthesis and secretion
11.16 p.256

- Preproinsulin
- Proinsulin
- Short AA acid sequence cleaved out to form active insulin.
- C peptide released

Biochemistry of insulin

Transport and Metabolism

- Not bound to a carrier
• 1/2 life is about 5 minutes (2x glucagon)
• Degraded in liver and kidney
• 50% utilized before reaching liver and kidney.
• Liver is primary target.
• Insulinases! - breakdown insulin and glucagon.

Glucagon

• 29 AA polypeptide
• No DS bond or sidechains
• Similar to secretin and gastrin GIP and VIP
• Synthesis is from a preprohormone as well.
• Prohormone is split releasing it to the blood
• Very little in blood - short ½ life ½ removed in first pass through the liver.

The Endocrine Pancreas

• Insulin
 - Metabolic Effects
 • Liver Cells
 • Muscle Cells
 • Adipose Cells
 - Mechanism of Action of Insulin--Tyr. Kinase

Function of pancreatic hormones

• Growth
• Biochemical metabolism
• Insulin and glucagon have opposite effects
• Insulin - anabolic- lowers blood glucose
• Glucagon- catabolic – raises blood glucose
• Effects on lipid and protein depend on biochemical state I-
 increases fat and protein anabolism G-opposite

Start here
Insulin Function

• Liver Cells
 - Increase Protein Synthesis
 • Glycogen synthesis from glucose
 • Increase glucose transport into cells
 • Increase amino acid transport into cells
 • Positive Nitrogen Balance
 - Store Glucose as Glycogen, reduce blood Glucose concentrations

Insulin Function

• Muscle Cell Actions
 - Increase glucose uptake
 - Increase amino acid uptake
 - Increase protein synthesis (enzymes & structural)
 - Decrease protein degradation
 - Increase fatty acid uptake as needed
 - Increase muscle glycogen synthesis

Insulin Function

• Adipose Cell Actions
 - Increase protein synthesis (for lipogenesis)
 - Increase glucose uptake into cells
 - Increase neutral lipid formation (lipogenesis)
 - Decrease neutral lipid degradation (lipolysis)

Glucose Levels Over Time

The Endocrine Pancreas

• Glucagon
 - Stimuli causing release
 • Elevated Glucose
 • Elevated Amino Acids
 - Mechanisms of Glucagon Effects
 • Liver Effects
 • Muscle Effects
 • Adipose Tissue Effects

• Somatostatin
 - Inhibits Insulin
 - Inhibits Glucagon
Glucagon

• Produced in \(\alpha\) cells of pancreas
• 29 amino acid linear molecule
• Circulation via portal blood to Liver

Glucagon
- Bathes Liver with high levels of glucagon
- Binds to liver cell plasma membranes
 • Increases A.C. activity leading to increased cAMP levels and increased Ca++ levels.

• Glucagon actions in the Liver include:
 - Increases Gluconeogenesis
 • Increases every rate limiting enzyme
 - Increases Glycogenolysis
 • If glycogen is present it is mobilized.

Glucagon
• Increases Amino Acid utilization, decreasing plasma amino acid levels & causing increased \(N_2\) in the plasma.
• Increases Hormone Sensitive Lipase
 - Increased lipolysis, increased FFA in plasma
 - Decreases neutral fat stores
• Primary Fasting hormone of man
• I/G fed ratio = 20/1 I/G fasting ratio = 1/3

Stimuli for Insulin Release

• Phase I
 - Gut glucose Gut Glucagon
 - Pancreatic Insulin (preformed) + C-peptide
 • short-lived 2 - 6 min.
 - Sulfonylureas, Secretin, CCK-PK

• Phase II
 - Blood Glucose Cell Gluc. Insulin
 - Lasts as long as blood glucose is elevated (hr)
 - Insulin synthesis & release (not preformed)

Somatostatin (SRIH) Physiology
• Produced in \(\delta\) (D) cells of pancreas and elsewhere in G.I. Tract
(as you know).

- 14 or 28 Amino Acids
- Release stimulated by High Insulin & Glucagon
- SRIH inhibits release of Insulin and Glucagon
- Decreased glucose transport across gut wall
 - decreased gut blood flow

Glucagon

- Stimuli
 - 1 stimulus is a fall in plasma glucose
 - 2 stimulus is rise in gut glucose
 - 3 stimulus is rise in plasma amino acids

Weekly Quiz

- Describe all the secretions of the pancreas and give a brief function for each.