Pituitary Hormones

- Groupings
- Chemical
 - GH and PRL are proteins
 - ACTH, LPH, and MSH are peptides
 - FSH, LH and TSH are Glycoproteins
 - Oxytocin and Vasopressin are peptides
- these hormones have isoforms

Pituitary Hormones

- GH overview
 - All vertebrates
 - Species specific
 - Large, protein, single chain, 190 AA, 20,000
 - Big, intermediate and small forms
 - Active core (60%)
 - Bioassay

Pituitary Hormones

- GH function
 - Metabolic regulator
 - Protects lean mass and nervous tissue
 - fat metabolism (produces fatty acids)
 - Abundant during fasting
 - Targets all tissues except nervous tissue
 - Effects occur through IGF one and 2

Pituitary Hormones

- GH function
 - Function of GH varies with the life cycle of the organism
 - Immature animals – responsible for growth
 - Adults – too much can cause overgrowth
 » i.e. “Frankenstein effect”
 - Effects carbohydrate metabolism
 - Reduces tissue uptake of sugar and as a result increases the blood sugar levels
 - Increases sugar output from liver
 - Effects on fat metabolism
 - Breaks down fatty acids for use as energy
 - Diabetogenic hormone?
- Effects on protein metabolism
 - Increases cellular AA uptake
 - Stimulates protein synthesis in cells

Pituitary Hormones

- GH regulation
 - Neural
 - Stress increases it
 - Sleep/wake cycle alters it
 - Higher CNS responses alter it
 - Chemical
 - Somatostatin/somatocrinin
 - Metabolic – low blood sugar, fasting, drop in AA’s
 - Chronotropic
 - Elevated at night, reduced during the day

Pituitary Hormones

- PRL overview (lactogenic hormone, leuteotropin)
 - All vertebrates
 - Species specific
 - Large, protein, single chain, 198 AA,

Pituitary Hormones

- PRL function
 - Regulates reproductive and parental care
 - Effects on the integument
 - Osmoregulation
 - Growth
 - Metabolism

Pituitary Hormones

- GH regulation
 - Neural
 - Controlled from higher nervous centers (stress)
 - Chemical
 - Prolactin inhibiting factor (PIF),
 - prolactin releasing factor (PRF)
 - PIF the major control in mammals
 - Short loop and ultrashort loop feedback
• Long loop feedback from estrogen and progesterone
 – Biphasic effects of estrogen

Start here

Pituitary Hormones

• ACTH, MSH, LPH overview
 – Grouped because of common function
 – Similar chemistry, there are long sequences that are similar
 (heptapeptides)

Pituitary Hormones

• ACTH overview
 – Single, peptide, 39 AA’s, produced in anterior pituitary
 – 1st 24 AA’s required for biological action
 – Residues 25-34 used for receptor recognition
 – ACTH 1-24 not species specific

Pituitary Hormones

• ACTH function
 – Stimulates the adrenal cortex
 – Quick acting to cause release of glucocorticoids

Pituitary Hormones

• ACTH regulation
 – Neural
 • #1 stress hormone
 – Chemical
 • Corticotropin releasing factor (CRF) from the hypothalamus
 • Short loop, ultra short loop feedback on the pituitary and hypothalamus
 • Long loop feedback from glucocorticoids to the anterior pituitary

Pituitary Hormones

• MSH overview
 – Melanotropin, melanostimulating hormone, intermedin
 – Produced in the Pars Intermedia or Pars Distalis
 – Function not clear in higher vertebrates
 – 3 types
• Alpha – 13 AA’s, Beta 18 AA’s, Gamma 22 AA’s
 – Smallest hormone produced in pituitary
 – Alpha has the greatest biological activity of the 3 forms

Pituitary Hormones

• MSH function
 – Color adaptation in lower vertebrates
 – Stimulates melanin synthesis and storage in higher vertebrates
 – Camouflage, sexual behavior, thermoregulation

Pituitary Hormones

• MSH function
 – Disperses melanin in melanophores

Pituitary Hormones

• MSH regulation
 – Neural
 • Neural inputs from the Pars intermedia
 – Catecholamines – inhibitory
 – Adrenergic - stimulatory
 – Chemical
 • MIF melanotropin inhibiting factor
 – Tonic inhibition from this hypothalamic factor keeps MSH down

Pituitary Hormones

• LPH overview
 – Lipotropin
 – Overall function is to break down fat
 – The most important precursors of brain peptides and psychoactive drugs
 – 2 types
 • Beta 91 AA’s, Gamma 58 AA’s
• LPH synthesis
 – Formed from the prehormone POMC

Pituitary Hormones

• POMC
 • Provides 7-10 potent brain peptides
 – Endorphins
 • Alpha, beta, gamma
 – Pain relief
 – Enkephalins
 – Pleasure, pain, memory, learning