Hormone Function

To study a hormone and its action you must know about:
- Its origin
- Storage
- Secretion
- Transportation
- Mechanism of action
- Function
- Metabolism
- Chemical structure

Best known hormones, insulin, catecholamines, steroids

General Model for Hormone Biosynthesis

Storage, Transport and Metabolism

Protein/peptide hormones
- Cells with much R.E.R.
- Protein packaging in the golgi
- Merging of vesicles
- Movement of vesicles to the membrane
- 3 fates
 - Into blood (endocrine)
 - Reabsorbed (autocrine)
 - To a neighboring cell (paracrine)

Steroid hormones
- Cells with much S.E.R.
- Acetate cholesterol → Larger lipids
- Coalescence into large granules
- Movement of vesicles through the membrane
- 3 fates
 - Into blood (endocrine)
 - Reabsorbed (autocrine)
 - To a neighboring cell (paracrine)
General Model for Hormone Biosynthesis
Storage, Transport and Metabolism

• Steroid hormones
 – Multicellular synthesis
 – Multitissue synthesis
 – Noncellular systems

General Model for Hormone Biosynthesis
Storage, Transport and Metabolism

• Prohormones
 – Large, biologically active precursors (mostly found in protein hormones)
 – Clevage to active and inactive peptides

General Model for Hormone Biosynthesis
Storage, Transport and Metabolism

• Prohormones
 – Significance
 • Hormone storage
 • Spatial configuration for synthesis
 • Efficient movement of large amts of protein

 • Ex. insulin

General Model for Hormone Biosynthesis
Storage, Transport and Metabolism

• Prohormones
 – Significance of Hormone storage
 • No degradation
 • Inactive
 • Readily available for secretion

• Secretion of hormones
 – Movement of granules to membrane (microtubules)
 – Ca and energy dependent membrane changes

• Hormone Degradation
 – Liver, kidney, lung
 – ½ life
 – Binding proteins

General Model for Hormone Biosynthesis
Storage, Transport and Metabolism

• Binding proteins
 – Plasma proteins made in the liver
 – Equilibrium: bound ↔ unbound

• Functions of binding
 – Good storage, increases ½ life, blood brain barrier.

• Metabolism
½ lives in minutes
- Enzymatic degradation in liver, lung, or kidney
- Oxidations, reductions, deaminations, methylations
- Sulfate or glucurononic conjugation (water soluble)
- Trace amounts in feces

General Model for Hormone Biosynthesis
Storage, Transport and Metabolism
- Each of these processes contributes to the overall level of hormone in the blood.