Invariant polynomial subspaces

David Gómez-Ullate, Niky Kamran, Robert Milson

ACA 2007
Overview of some recent results

Motivation and background
Overview of some recent results

- Motivation and background
- Linear models
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace

Quasi-exact solvability beyond \mathfrak{sl}_2
Finite-gap potentials

Nonlinear models
- Key concept: deficiency
- Translation-invariant, quadratically non-linear operators
- Non-standard reduction of evolution equations (non-linear separation of variables)

Concluding remarks
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace
 - Quasi-exact solvability beyond sl_2
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace
 - Quasi-exact solvability beyond sl$_2$
 - Finite-gap potentials

David Gómez-Ullate, Niky Kamran, Robert Milson
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace
 - Quasi-exact solvability beyond sl_2
 - Finite-gap potentials
- Nonlinear models
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace
 - Quasi-exact solvability beyond sl$_2$
 - Finite-gap potentials
- Nonlinear models
 - Key concept: deficiency
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace
 - Quasi-exact solvability beyond \mathfrak{sl}_2
 - Finite-gap potentials
- Nonlinear models
 - Key concept: deficiency
 - Translation-invariant, quadratically non-linear operators
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace
 - Quasi-exact solvability beyond \mathfrak{sl}_2
 - Finite-gap potentials
- Nonlinear models
 - Key concept: deficiency
 - Translation-invariant, quadratically non-linear operators
 - Non-standard reduction of evolution equations (non-linear separation of variables)
Overview of some recent results

- Motivation and background
- Linear models
 - Key concept: exceptional subspace
 - Quasi-exact solvability beyond \mathfrak{sl}_2
 - Finite-gap potentials
- Nonlinear models
 - Key concept: deficiency
 - Translation-invariant, quadratically non-linear operators
 - Non-standard reduction of evolution equations (non-linear separation of variables)
- Concluding remarks
Motivation and background

Basic setup

- Univariate differential operator: \(T_f[u] := f(x, u, u', \ldots, u^{(r)}) \) acting on \(\mathcal{P}_n(x) = \langle 1, x, \ldots, x^n \rangle \)
Motivation and background

Basic setup

- Univariate differential operator: $T_f[u] := f(x, u, u', \ldots, u^{(r)})$ acting on $P_n(x) = \langle 1, x, \ldots, x^n \rangle$
- Codimension k subspace $\mathcal{M} = \mathcal{M}_{n-k+1} \subset P_n(x)$
Motivation and background

Basic setup

- Univariate differential operator: \(T_f[u] := f(x, u, u', \ldots, u^{(r)}) \) acting on \(\mathcal{P}_n(x) = \langle 1, x, \ldots, x^n \rangle \n\n- Codimension \(k \) subspace \(\mathcal{M} = \mathcal{M}_{n-k+1} \subset \mathcal{P}_n(x) \n\n- Question: when is \(T(\mathcal{M}) \subseteq \mathcal{M} \)?
Motivation and background

Basic setup

- Univariate differential operator: \(T_f[u] := f(x, u, u', \ldots, u^{(r)}) \) acting on \(P_n(x) = \langle 1, x, \ldots, x^n \rangle \)
- Codimension \(k \) subspace \(\mathcal{M} = \mathcal{M}_{n-k+1} \subset P_n(x) \)
- Question: when is \(T(\mathcal{M}) \subseteq \mathcal{M} \)?

Variations

- Linear models: look for \(\mathcal{M} \) preserved by “interesting” (e.g., rational coefficients) operators.
Motivation and background

Basic setup

- Univariate differential operator: $T_f[u] := f(x, u, u', \ldots, u^{(r)})$ acting on $\mathcal{P}_n(x) = \langle 1, x, \ldots, x^n \rangle$
- Codimension k subspace $\mathcal{M} = \mathcal{M}_{n-k+1} \subset \mathcal{P}_n(x)$
- Question: when is $T(\mathcal{M}) \subseteq \mathcal{M}$?

Variations

- Linear models: look for \mathcal{M} preserved by “interesting” (e.g., rational coefficients) operators.
- Non-linear models: look for “interesting” (e.g., low order, translation-invariant) operators preserving \mathcal{P}_n
sl$_2$ approach to quasi-exact solvability

sl$_2$ generators

\[
\begin{align*}
J^-_n &= D_x, \\
J^0_n &= xD_x - \frac{n}{2}, \\
J^+_n &= x^2D_x - nx, \\
n &= 0, 1, 2, 3, \ldots
\end{align*}
\]
sl$_2$ approach to quasi-exact solvability

sl$_2$ generators

\[
J_n^- = D_x, \quad J_n^0 = xD_x - \frac{n}{2}, \quad J_n^+ = x^2D_x - nx, \quad n = 0, 1, 2, 3, \ldots
\]

Theorem (Burnside)

\[
\mathcal{D}_r(P_n) = \{ p(J_n^-, J_n^0, J_n^+) : \deg(p) = r \}
\]
sl₂ approach to quasi-exact solvability

sl₂ generators

<table>
<thead>
<tr>
<th>sl₂ generators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_n^- = D_x$, $J_n^0 = xD_x - \frac{n}{2}$, $J_n^+ = x^2D_x - nx$, $n = 0, 1, 2, 3, \ldots$</td>
<td></td>
</tr>
</tbody>
</table>

Theorem (Burnside, G-U, K, M)

Definition

$D_r(M) := \{ T: \text{linear operator}, \text{ord}(T) \leq r, T(M) \subseteq M \}$

Call M an X_k (exceptional) subspace if

$D_2(M) \subset D_2(P_n)$

Questions

Is QES more general than the sl₂ algebraization?

Do exceptional subspaces exist?

David Gómez-Ullate, Niky Kamran, Robert Milson

Invariant polynomial subspaces
sl$_2$ approach to quasi-exact solvability

sl$_2$ generators

\[
J_n^- = D_x, \quad J_n^0 = xD_x - \frac{n}{2}, \quad J_n^+ = x^2D_x - nx, \quad n = 0, 1, 2, 3, \ldots
\]

Theorem (Burnside, G-U, K, M)

\[
\mathcal{D}_r(\mathcal{P}_n) = \{ p(J_n^-, J_n^0, J_n^+) : \text{deg}(p) = r \} \quad \text{dim} \mathcal{D}_r(\mathcal{P}_n) = (r + 1)^2
\]

Definition

\[
\mathcal{D}_r(\mathcal{M}) := \{ T \text{ linear operator} : \text{ord}(T) \leq r \text{ and } T(\mathcal{M}) \subseteq \mathcal{M} \}
\]

Call \mathcal{M} an X_k (exceptional) subspace if $\mathcal{D}_2(\mathcal{M}) \subsetneq \mathcal{D}_2(\mathcal{P}_n)$
sl\(_2\) approach to quasi-exact solvability

sl\(_2\) generators

\[
\begin{align*}
J^-_n &= D_x, & J^0_n &= xD_x - \frac{n}{2}, & J^+_n &= x^2D_x - nx, & n &= 0, 1, 2, 3, \ldots
\end{align*}
\]

Theorem (Burnside,G-U,K,M)

\[
\mathcal{D}_r(\mathcal{P}_n) = \{ p(J^-_n, J^0_n, J^+_n) : \text{deg}(p) = r \} \quad \text{dim} \mathcal{D}_r(\mathcal{P}_n) = (r + 1)^2
\]

Definition

\[
\mathcal{D}_r(\mathcal{M}) := \{ T \text{ linear operator} : \text{ord}(T) \leq r \text{ and } T(\mathcal{M}) \subseteq \mathcal{M} \}
\]

Call \(\mathcal{M}\) an \(X_k\) (exceptional) subspace if \(\mathcal{D}_2(\mathcal{M}) \subsetneq \mathcal{D}_2(\mathcal{P}_n)\)
sl\(_2\) approach to quasi-exact solvability

sl\(_2\) generators

\[
\begin{align*}
J^-_n &= D_x, \\
J^0_n &= xD_x - \frac{n}{2}, \\
J^+_n &= x^2D_x - nx, \\
n &= 0, 1, 2, 3, \ldots
\end{align*}
\]

Theorem (Burnside, G-U, K, M)

\[
\mathcal{D}_r(\mathcal{P}_n) = \{ p(J^-_n, J^0_n, J^+_n) : \text{deg}(p) = r \} \quad \text{dim } \mathcal{D}_r(\mathcal{P}_n) = (r + 1)^2
\]

Definition

\[
\mathcal{D}_r(\mathcal{M}) := \{ T \text{ linear operator} : \text{ord}(T) \leq r \text{ and } T(\mathcal{M}) \subseteq \mathcal{M} \}
\]

Call \(\mathcal{M} \) an \(X_k \) (exceptional) subspace if \(\mathcal{D}_2(\mathcal{M}) \nsubseteq \mathcal{D}_2(\mathcal{P}_n) \)

Questions

- Is QES more general than the sl\(_2\) algebraization?
sl$_2$ approach to quasi-exact solvability

sl$_2$ generators
\[J_n^- = D_x, \quad J_n^0 = xD_x - \frac{n}{2}, \quad J_n^+ = x^2D_x - nx, \quad n = 0, 1, 2, 3, \ldots \]

Theorem (Burnside,G-U,K,M)
\[\mathcal{D}_r(\mathcal{P}_n) = \{ p(J_n^-, J_n^0, J_n^+) : \deg(p) = r \} \quad \dim \mathcal{D}_r(\mathcal{P}_n) = (r + 1)^2 \]

Definition
\[\mathcal{D}_r(\mathcal{M}) := \{ T \text{ linear operator} : \text{ord}(T) \leq r \text{ and } T(\mathcal{M}) \subseteq \mathcal{M} \} \]
Call \mathcal{M} an X_k (exceptional) subspace if $\mathcal{D}_2(\mathcal{M}) \subsetneq \mathcal{D}_2(\mathcal{P}_n)$

Questions
- Is QES more general than the sl$_2$ algebraization?
- Do exceptional subspaces exist?
Quasi-exact solvability beyond sl\(_2\)

Theorem (Post, Turbiner, 1995)

The codim. 1 subspace \(\mathcal{E}_n = \langle 1, x^2, x^3, \cdots, x^n \rangle \) is \(X_1 \).
Quasi-exact solvability beyond sl_2

Theorem (Post, Turbiner, 1995)

*The codim. 1 subspace $\mathcal{E}_n = \langle 1, x^2, x^3, \ldots, x^n \rangle$ is X_1.**

Proof. \mathcal{E}_n is preserved by $D_{xx} - \frac{2}{x} D_x$.

David Gómez-Ullate, Niky Kamran, Robert Milson

Invariant polynomial subspaces
Theorem (Post, Turbiner, 1995)

The codim. 1 subspace $\mathcal{E}_n = \langle 1, x^2, x^3, \ldots, x^n \rangle$ is X_1.

Proof. \mathcal{E}_n is preserved by $D_{xx} - \frac{2}{x} D_x$. Note: $\dim D_2(\mathcal{E}_n) = 7$
Quasi-exact solvability beyond \mathfrak{sl}_2

Theorem (Post, Turbiner, 1995)

The codim. 1 subspace $\mathcal{E}_n = \langle 1, x^2, x^3, \ldots, x^n \rangle$ is X_1.

Proof. \mathcal{E}_n is preserved by $D_{xx} - \frac{2}{x} D_x$. Note: $\dim \mathcal{D}_2(\mathcal{E}_n) = 7$

Theorem (G-U, K, M, 2006)

Every X_1 subspace \mathcal{M}_n is projectively equivalent to \mathcal{E}_n.
Quasi-exact solvability beyond sl_2

Theorem (Post, Turbiner, 1995)

The codim. 1 subspace $\mathcal{E}_n = \langle 1, x^2, x^3, \ldots, x^n \rangle$ is X_1.

Proof. \mathcal{E}_n is preserved by $D_{xx} - \frac{2}{x} D_x$. Note: $\dim D_2(\mathcal{E}_n) = 7$

Theorem (G-U, K, M, 2006)

Every X_1 subspace \mathcal{M}_n is projectively equivalent to \mathcal{E}_n.

A QES potential with a non-sl_2 sector

- Hamiltonian: $H = -D_{xx} + 2A^2 \cosh(2x) + 4An \cosh(x) - \frac{1}{2} \sech^2(x/2)$
The codim. 1 subspace \(\mathcal{E}_n = \langle 1, x^2, x^3, \ldots, x^n \rangle \) is \(X_1 \).

To prove this, we note that \(\mathcal{E}_n \) is preserved by \(D_{xx} - \frac{2}{x} D_x \). The dimension of \(D_2(\mathcal{E}_n) \) is 7.

Theorem (G-U, K, M, 2006)

Every \(X_1 \) subspace \(\mathcal{M}_n \) is projectively equivalent to \(\mathcal{E}_n \).

A QES potential with a non-\(\text{sl}_2 \) sector

- Hamiltonian: \(H = -D_{xx} + 2A^2 \cosh(2x) + 4An \cosh(x) - \frac{1}{2} \text{sech}^2(x/2) \)
- \(\text{sl}_2 \) algebraization:
 \[\psi_{2k}(x) = \mu(x) p_k(z(x)), \quad p_k(z) \in \mathcal{P}_n(z), \quad k = 0, \ldots, n \]
 \[T = \mu^{-1} H \mu, \quad \mu(x) = \exp(2A \cosh(x)) \text{sech}(x/2), \quad z = -\sinh^2(x/2) \]
 \[T = z(1-z)D_{zz} + (8Az(z-1) + \frac{1}{2}) D_z - 8Anz \]
Quasi-exact solvability beyond sl_2

Theorem (Post, Turbiner, 1995)

The codim. 1 subspace $\mathcal{E}_n = \langle 1, x^2, x^3, \ldots, x^n \rangle$ is X_1.

Proof. \mathcal{E}_n is preserved by $D_{xx} - \frac{2}{x} D_x$. Note: $\dim \mathcal{D}_2(\mathcal{E}_n) = 7$

Theorem (G-U, K, M, 2006)

Every X_1 subspace \mathcal{M}_n is projectively equivalent to \mathcal{E}_n.

A QES potential with a non-sl_2 sector

- Hamiltonian: $H = -D_{xx} + 2A^2 \cosh(2x) + 4A n \cosh(x) - \frac{1}{2} \sech^2(x/2)$
- sl_2 algebraization: $\psi_{2k}(x) = \mu(x) p_k(z(x)), \ p_k(z) \in \mathcal{P}_n(z), \ k = 0, \ldots, n$

 $T = \mu^{-1} H \mu, \ \mu(x) = \exp(2A \cosh(x)) \sech(x/2), \ z = - \sinh^2(x/2)$

 $T = z(1 - z) D_{zz} + (8Az(z - 1) + \frac{1}{2}) D_z - 8Anz$

- X_1 alg.: $\psi_k(x) = \hat{\mu}(x) \hat{p}_k(w(x)), \ \hat{p}_k(w) \in \langle w - \frac{1}{n}, w^2, \ldots, w^{2n} \rangle$

 $\hat{T} = \hat{\mu}^{-1} H \hat{\mu}, \ \hat{\mu}(x) = \exp(2A \cosh(x) - nx) \sech(x/2), \ w = e^x + 1$

 $\hat{T} = -w^2D_{ww} + (-2A w^2 + 2n w + 2(A - 1) + \frac{2}{1+w}) D_w + 4A n w + \frac{2n}{1+w}$
Quasi-exact solvability beyond sl$_2$

A QES potential with a non-sl$_2$ sector

- **Hamiltonian:** $H = -D_{xx} + 2A^2 \cosh(2x) + 4An \cosh(x) - \frac{1}{2} \sech^2(x/2)$
- **sl$_2$ algebraization:** $\psi_{2k}(x) = \mu(x) p_k(z(x))$, $p_k(z) \in \mathcal{P}_n(z)$, $k = 0, \ldots, n$

 $T = \mu^{-1} H \mu$, \quad $\mu(x) = \exp(2A \cosh(x)) \sech(x/2)$, \quad $z = -\sinh^2(x/2)$

 $T = z(1 - z) D_{zz} + (8Az(z - 1) + \frac{1}{2}) D_z - 8Anz$

- **X_1 alg.:** $\psi_k(x) = \hat{\mu}(x) \hat{p}_k(w(x))$, \quad $\hat{p}_k(w) \in \langle w - \frac{1}{n}, w^2, \ldots, w^{2n} \rangle$

 $\hat{T} = \hat{\mu}^{-1} H \hat{\mu}$, \quad $\hat{\mu}(x) = \exp(2A \cosh(x) - nx) \sech(x/2)$, \quad $w = e^x + 1$

 $\hat{T} = -w^2 D_{ww} + (-2Aw^2 + 2nw + 2(A - 1) + \frac{2n}{1+w}) D_w + 4Anw + \frac{2n}{1+w}$
Treibich-Verdier class

Theorem (T,V, 1990)

A complex-valued potential \(u(x) = \sum_{j=1}^{4} d_j \varphi(x - \omega_j) \), where \(\omega_1 = 0, \omega_4 = \omega_2 + \omega_3 \), and \(\omega_2, \omega_3 \) are the fundamental half-periods, is a solution of the stationary KdV hierarchy iff \(d_j = \ell_j (\ell_j + 1) \) for some \(\ell_j \in \mathbb{Z} \).
Treibich-Verdier class

Theorem (T,V, 1990)

A complex-valued potential \(u(x) = \sum_{j=1}^{4} d_j \wp(x - \omega_j) \), where \(\omega_1 = 0, \omega_4 = \omega_2 + \omega_3 \), and \(\omega_2, \omega_3 \) are the fundamental half-periods, is a solution of the stationary KdV hierarchy iff \(d_j = \ell_j(\ell_j + 1) \) for some \(\ell_j \in \mathbb{Z} \).

Associated Lamé potentials, QES Heun equations

\[
H = -D_{xx} + \sum_{j=1}^{4} \ell_j(\ell_j + 1)\wp(x - \omega_j), \quad z = \wp(x), \quad w^2 = p(z)
\]

\[
= p(z)D_{zz} + \frac{1}{2}p'(z)D_z + \ell_1(\ell_1 + 1)z + \sum_{i=2}^{4} \ell_j(\ell_j + 1)\frac{p'(z_j)}{z - z_j}
\]
Theorem (T,V, 1990)

A complex-valued potential \(u(x) = \sum_{j=1}^{4} d_j \varphi(x - \omega_j) \), where \(\omega_1 = 0, \omega_4 = \omega_2 + \omega_3 \), and \(\omega_2, \omega_3 \) are the fundamental half-periods, is a solution of the stationary KdV hierarchy iff \(d_j = \ell_j(\ell_j + 1) \) for some \(\ell_j \in \mathbb{Z} \).

Associated Lamé potentials, QES Heun equations

\[
H = -D_{xx} + \sum_{j=1}^{4} \ell_j(\ell_j + 1) \varphi(x - \omega_j), \quad z = \varphi(x), \quad w^2 = p(z)
\]

\[
= p(z)D_{zz} + \frac{1}{2}p'(z)D_z + \ell_1(\ell_1 + 1)z + \sum_{i=2}^{4} \ell_j(\ell_j + 1) \frac{p'(z_j)}{z - z_j}
\]
A complex-valued potential $u(x) = \sum_{j=1}^{4} d_j \wp(x - \omega_j)$, where $\omega_1 = 0, \omega_4 = \omega_2 + \omega_3$, and ω_2, ω_3 are the fundamental half-periods, is a solution of the stationary KdV hierarchy iff $d_j = \ell_j(\ell_j + 1)$ for some $\ell_j \in \mathbb{Z}$.

Associated Lamé potentials, QES Heun equations

- $H = -D_{xx} + \sum_{j=1}^{4} \ell_j(\ell_j + 1) \wp(x - \omega_j)$, $z = \wp(x)$, $w^2 = p(z)$

 $$= p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \ell_1(\ell_1 + 1)z + \sum_{i=2}^{4} \ell_j(\ell_j + 1) \frac{p'(z_j)}{z-z_j}$$

- $\frac{1}{2} \sum \ell_j = n \Rightarrow T$ is QES, w/ eigenfunctions $\psi_i(x) = \mu(x)p_i(z)$, $i = 0 \ldots n$
Theorem (T,V, 1990)

A complex-valued potential $u(x) = \sum_{j=1}^{4} d_j \wp(x - \omega_j)$, where $\omega_1 = 0, \omega_4 = \omega_2 + \omega_3$, and ω_2, ω_3 are the fundamental half-periods, is a solution of the stationary KdV hierarchy iff $d_j = \ell_j(\ell_j + 1)$ for some $\ell_j \in \mathbb{Z}$.

Associated Lamé potentials, QES Heun equations

- $H = -D_{xx} + \sum_{j=1}^{4} \ell_j(\ell_j + 1) \wp(x - \omega_j)$, $z = \wp(x)$, $w^2 = p(z)$

 $= p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \ell_1(\ell_1 + 1)z + \sum_{i=2}^{4} \ell_j(\ell_j + 1) \frac{p'(z_j)}{z - z_j}$

- $\frac{1}{2} \sum \ell_j = n \Rightarrow T$ is QES, w/ eigenfunctions $\psi_i(x) = \mu(x)p_i(z)$, $i = 0 \ldots n$

- $\ell_1 > \ell_2 \in \mathbb{Z}_+, \ell_3, \ell_4 \in \{0, 1\}, \omega_1, i\omega_2 \in \mathbb{R} \Rightarrow T$ is a finite-gap potential

 4 algebraic sectors: $\mathcal{A} = \bigoplus_{i=0}^{3} \mu_i(x)\mathcal{P}_{n_i}(z)$ with $\dim \mathcal{A} = \sum_i n_i = 2\ell_1 + 1$

 Band edges, spectral curve: $\nu^2 = \det(E - [H|\mathcal{A}]) = \prod_{j=0}^{2\ell_1}(E - E_j)$.
A complex-valued potential \(u(x) = \sum_{j=1}^{4} d_j \phi(x - \omega_j) \), where \(\omega_1 = 0, \omega_4 = \omega_2 + \omega_3 \), and \(\omega_2, \omega_3 \) are the fundamental half-periods, is a solution of the stationary KdV hierarchy iff \(d_j = \ell_j(\ell_j + 1) \) for some \(\ell_j \in \mathbb{Z} \).

Theorem (T,V, 1990)

Associated Lamé potentials, QES Heun equations

- \(H = -D_{xx} + \sum_{j=1}^{4} \ell_j(\ell_j + 1) \phi(x - \omega_j), \quad z = \phi(x), \quad w^2 = p(z) \)

- \(= p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \ell_1(\ell_1 + 1)z + \sum_{i=2}^{4} \ell_j(\ell_j + 1) \frac{p'(z_j)}{z - z_j} \)

- \(\frac{1}{2} \sum \ell_j = n \Rightarrow T \) is QES, w/ eigenfunctions \(\psi_i(x) = \mu(x)p_i(z), \ i = 0 \ldots n \)

- \(\ell_1 > \ell_2 \in \mathbb{Z}_+, \ \ell_{3,4} \in \{0, 1\}, \omega_1, i\omega_2 \in \mathbb{R} \Rightarrow T \) is a finite-gap potential

4 algebraic sectors: \(A = \bigoplus_{i=0}^{3} \mu_i(x)P_{n_i}(z) \) with \(\dim A = \sum n_i = 2\ell_1 + 1 \)

Band edges, spectral curve: \(\nu^2 = \det(E - [H|A]) = \prod_{j=0}^{2\ell_1}(E - E_j) \).
Treibich-Verdier class

Theorem (T,V, 1990)

A complex-valued potential \(u(x) = \sum_{j=1}^{4} d_j \varphi(x - \omega_j) \), where \(\omega_1 = 0, \omega_4 = \omega_2 + \omega_3 \), and \(\omega_2, \omega_3 \) are the fundamental half-periods, is a solution of the stationary KdV hierarchy iff \(d_j = \ell_j(\ell_j + 1) \) for some \(\ell_j \in \mathbb{Z} \).

Associated Lamé potentials, QES Heun equations

- \(H = -D_{xx} + \sum_{j=1}^{4} \ell_j(\ell_j + 1) \varphi(x - \omega_j), \quad z = \varphi(x), \quad w^2 = p(z) \)
 \(= p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \ell_1(\ell_1 + 1)z + \sum_{i=2}^{4} \ell_j(\ell_j + 1) \frac{p'(z_j)}{z-z_j} \)

- \(\frac{1}{2} \sum \ell_j = n \Rightarrow T \) is QES, w/ eigenfunctions \(\psi_i(x) = \mu(x)p_i(z), \ i = 0 \ldots n \)

- \(\ell_1 > \ell_2 \in \mathbb{Z}_+, \ \ell_{3,4} \in \{0, 1\}, \omega_1, i\omega_2 \in \mathbb{R} \Rightarrow T \) is a finite-gap potential

4 algebraic sectors: \(\mathcal{A} = \bigoplus_{i=0}^{3} \mu_i(x)P_{n_i}(z) \) with \(\dim \mathcal{A} = \sum_i n_i = 2\ell_1 + 1 \)

Band edges, spectral curve: \(\nu^2 = \det(E - [H|\mathcal{A}]) = \prod_{j=0}^{2\ell_1}(E - E_j) \).
An X\(_1\) elliptic, finite-gap potential

Theorem (Gesztesy, Weikard)

An elliptic potential \(u(x)\) is a solution of the stationary KdV hierarchy iff

\[
 u(x) = \sum_{j=1}^{M} \ell_j (\ell_j + 1) \wp(x - \omega_j), \quad \ell_j \in \mathbb{Z},
\]

where

\[
 \sum_{j' \neq j} \ell_{j'} (\ell_{j'} + 1) \wp^{(2k-1)}(\omega_j - \omega_{j'}) = 0, \quad \text{for all } 1 \leq j \leq M \text{ and } 1 \leq k \leq \ell_j.
\]
An X_1 elliptic, finite-gap potential

Theorem (Gesztesy, Weikard)

An elliptic potential $u(x)$ is a solution of the stationary KdV hierarchy iff

$$u(x) = \sum_{j=1}^{M} \ell_j(\ell_j + 1) \wp(x - \omega_j), \quad \ell_j \in \mathbb{Z},$$

where

$$\sum_{j' \neq j} \ell_{j'}(\ell_{j'} + 1) \wp^{(2k-1)}(\omega_j - \omega_{j'}) = 0, \text{ for all } 1 \leq j \leq M \text{ and } 1 \leq k \leq \ell_j.$$
An X_1 elliptic, finite-gap potential

<table>
<thead>
<tr>
<th>Theorem (Gesztesy, Weikard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An elliptic potential $u(x)$ is a solution of the stationary KdV hierarchy iff $u(x) = \sum_{j=1}^{M} \ell_j (\ell_j + 1) \wp(x - \omega_j)$, $\ell_j \in \mathbb{Z}$, where $\sum_{j' \neq j} \ell_{j'} (\ell_{j'} + 1) \wp^{(2k-1)}(\omega_j - \omega_{j'}) = 0$, for all $1 \leq j \leq M$ and $1 \leq k \leq \ell_j$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An explicit special case</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The Treibich-Verdier class is the $M = 4$ case.</td>
</tr>
</tbody>
</table>
An X_1 elliptic, finite-gap potential

Theorem (Gesztesy,Weikard)

An elliptic potential $u(x)$ is a solution of the stationary KdV hierarchy iff

$$u(x) = \sum_{j=1}^{M} \ell_j (\ell_j + 1) \wp(x - \omega_j), \quad \ell_j \in \mathbb{Z},$$

where

$$\sum_{j' \neq j} \ell_{j'} (\ell_{j'} + 1) \wp^{(2k-1)}(\omega_j - \omega_{j'}) = 0, \text{ for all } 1 \leq j \leq M \text{ and } 1 \leq k \leq \ell_j.$$

An explicit special case

- The Treibich-Verdier class is the $M = 4$ case.
- (T,V) Proved the $M = 5$, $\ell_5 = 1$ case using algebraic geometry.
An X$_1$ elliptic, finite-gap potential

Theorem (Gesztesy, Weikard)

An elliptic potential $u(x)$ is a solution of the stationary KdV hierarchy iff

$$u(x) = \sum_{j=1}^M \ell_j (\ell_j + 1) \wp(x - \omega_j), \quad \ell_j \in \mathbb{Z},$$

where

$$\sum_{j' \neq j} \ell_{j'} (\ell_{j'} + 1) \wp^{(2k-1)}(\omega_j - \omega_{j'}) = 0, \text{ for all } 1 \leq j \leq M \text{ and } 1 \leq k \leq \ell_j.$$

An explicit special case

- The Treibich-Verdier class is the $M = 4$ case.
- (T,V) Proved the $M = 5$, $\ell_5 = 1$ case using algebraic geometry.
- (Smirnov) Following operator has a false sing. point, $z = b$:

$$H = p(z)D_{zz} + \frac{1}{2}p'(z)D_z + \sum_{j=1}^4 \frac{(k_j^2 - \frac{1}{16})p'(z_j)}{z - z_j} + \frac{2p(b)}{(z-b)^2} + \frac{p'(b)}{z-b}, \quad \ell_i = 2k_i + \frac{1}{2}$$

$$p(z) = \prod_{j=1}^4 (z - z_j), \quad p(b) \neq 0, \quad \sum_j k_j p'(z_j) = 0, \quad \sum_j k_j^2 p'(z_j) (z - z_j)^2 = 0$$
An X_1 elliptic, finite-gap potential

Theorem (Gesztesy, Weikard)

An elliptic potential $u(x)$ is a solution of the stationary KdV hierarchy iff

$$u(x) = \sum_{j=1}^{M} \ell_j (\ell_j + 1) \wp(x - \omega_j), \quad \ell_j \in \mathbb{Z},$$

where

$$\sum_{j' \neq j} \ell_{j'} (\ell_{j'} + 1) \wp^{(2k-1)}(\omega_j - \omega_{j'}) = 0,$$

for all $1 \leq j \leq M$ and $1 \leq k \leq \ell_j$.

An explicit special case

- The Treibich-Verdier class is the $M = 4$ case.
- (T,V) Proved the $M = 5, \ell_5 = 1$ case using algebraic geometry.
- (Smirnov) Following operator has a false sing. point, $z = b$:

$$H = p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \sum_{j=1}^{4} \frac{(k_j^2 - \frac{1}{16}) p'(z_j)}{z - z_j} + \frac{2p(b)}{(z-b)^2} + \frac{p'(b)}{z-b}, \quad \ell_i = 2k_i + \frac{1}{2}$$

$$p(z) = \prod_{j=1}^{4} (z - z_j), \quad p(b) \neq 0, \quad \sum_{j} \frac{k_j^2 p'(z_j)}{(b-z_j)^2} = 0$$
An X_1 elliptic, finite-gap potential

Theorem (Gesztesy, Weikard)

An elliptic potential $u(x)$ is a solution of the stationary KdV hierarchy iff
\[u(x) = \sum_{j=1}^{M} \ell_j(\ell_j + 1) \wp(x - \omega_j), \quad \ell_j \in \mathbb{Z}, \]
\[\sum_{j' \neq j} \ell_{j'}(\ell_{j'} + 1) \wp^{(2k-1)}(\omega_j - \omega_{j'}) = 0, \]
for all $1 \leq j \leq M$ and $1 \leq k \leq \ell_j$.

An explicit special case

- The Treibich-Verdier class is the $M = 4$ case.
- (T,V) Proved the $M = 5$, $\ell_5 = 1$ case using algebraic geometry.
- (Smirnov) Following operator has a false sing. point, $z = b$:
 \[H = p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \sum_{j=1}^{4} \left(\frac{k_j^2 - \frac{1}{16}}{z-z_j} \right) + \frac{2p(b)}{(z-b)^2} + \frac{p'(b)}{z-b}, \quad \ell_i = 2k_i + \frac{1}{2} \]
 \[p(z) = \prod_{j=1}^{4} (z - z_j), \quad p(b) \neq 0, \quad \sum_{j} \frac{k_j^2 p'(z_j)}{(b-z_j)^2} = 0 \]
- (G-U,K,M) If $\sum_i k_i = n$, then H preserves an X_1 (QES).
 If $k_3, k_4 = \pm \frac{1}{4}$ and $z_j, b \in \mathbb{R}$, then $A = \bigoplus_{j=1}^{4} \mu_j(x) \mathcal{E}_n^{a_j; b}(z)$, where
 \[\mathcal{E}_n^{a;b} = \langle z - b - \frac{1}{a}, (z - b)^2, \ldots, (z - b)^n \rangle \]
 is H invariant.
 Spectral curve: \[\nu^2 = \det(E - [H|A]) \]
 where $[H|A]$ is a 4-diagonal matrix.
An X₁ elliptic, finite-gap potential

Theorem (Gesztesy, Weikard)

An elliptic potential \(u(x) \) is a solution of the stationary KdV hierarchy iff
\[
u(x) = \sum_{j=1}^{M} \ell_j(\ell_j + 1) \phi(x - \omega_j), \quad \ell_j \in \mathbb{Z},
\]
\[
\sum_{j' \neq j} \ell_{j'}(\ell_{j'} + 1) \phi^{(2k-1)}(\omega_j - \omega_{j'}) = 0, \quad \text{for all } 1 \leq j \leq M \text{ and } 1 \leq k \leq \ell_j.
\]

An explicit special case

- The Treibich-Verdier class is the \(M = 4 \) case.
- \((T,V)\) Proved the \(M = 5, \ell_5 = 1 \) case using algebraic geometry.
- \((\text{Smirnov})\) Following operator has a false sing. point, \(z = b \):
\[
H = p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \sum_{j=1}^{4} \left(\frac{k_j^2 - \frac{1}{16}}{z-z_j} \right) + \frac{2p(b)}{(z-b)^2} + \frac{p'(b)}{z-b}, \quad \ell_j = 2k_j + \frac{1}{2}
\]
\[
p(z) = \prod_{j=1}^{4} (z - z_j), \quad p(b) \neq 0, \quad \sum_j \frac{k_j^2 p'(z_j)}{(b-z_j)^2} = 0
\]
- \((\text{G-U,K,M})\) If \(\sum_i k_i = n \), then \(H \) preserves an \(X_1 \) (QES).

If \(k_3, k_4 = \pm \frac{1}{4} \) and \(z_j, b \in \mathbb{R} \), then \(\mathcal{A} = \bigoplus_{j=1}^{4} \mu_j(x) \mathcal{E}_{n_j}^{a_j,b}(z) \), where
\[
\mathcal{E}_{n}^{a,b} = \langle z - b - \frac{1}{a}, (z - b)^2, \ldots, (z - b)^n \rangle
\]
is \(H \) invariant.

Spectral curve: \(\nu^2 = \det(E - [H|\mathcal{A}]) \) where \([H|\mathcal{A}]\) is a 4-diagonal matrix.
An X_1 elliptic, finite-gap potential

Theorem (Gesztesy, Weikard)

An elliptic potential $u(x)$ is a solution of the stationary KdV hierarchy iff

$$u(x) = \sum_{j=1}^{M} \ell_j (\ell_j + 1) \varphi(x - \omega_j), \quad \ell_j \in \mathbb{Z},$$

where

$$\sum_{j' \neq j} \ell_{j'} (\ell_{j'} + 1) \varphi^{(2k-1)}(\omega_j - \omega_{j'}) = 0, \text{ for all } 1 \leq j \leq M \text{ and } 1 \leq k \leq \ell_j.$$

An explicit special case

- The Treibich-Verdier class is the $M = 4$ case.
- (T,V) Proved the $M = 5, \ell_5 = 1$ case using algebraic geometry.
- (Smirnov) Following operator has a false sing. point, $z = b$:

$$H = p(z)D_{zz} + \frac{1}{2} p'(z)D_z + \sum_{j=1}^{4} \left(k_j^2 - \frac{1}{16} \right) \frac{p'(z_j)}{z - z_j} + \frac{2p(b)}{(z-b)^2} + \frac{p'(b)}{z-b}, \quad \ell_i = 2k_i + \frac{1}{2}$$

$$p(z) = \prod_{j=1}^{4} (z - z_j), \quad p(b) \neq 0, \quad \sum_j \frac{k_j^2 p'(z_j)}{(b-z_j)^2} = 0$$

- (G-U,K,M) If $\sum_i k_i = n$, then H preserves an X_1 (QES).

If $k_3, k_4 = \pm \frac{1}{4}$ and $z_j, b \in \mathbb{R}$, then $A = \bigoplus_{j=1}^{4} \mu_j(x) \mathcal{E}^{a_j,b}_{n_j}(z)$, where

$$\mathcal{E}^{a,b}_{n} = \langle z - b - \frac{1}{a}, (z - b)^2, \ldots, (z - b)^n \rangle$$

is H invariant.

Spectral curve: $\nu^2 = \det(E - [H|A])$ where $[H|A]$ is a 4-diagonal matrix.
Non-linear separation of variables

Problem

Fix n and consider $\mathcal{P}_n(x)$. Find all translation-invariant differential operators $T_Q[u] := Q(u_0, u_1, \ldots, u_n)$, where Q is a quadratic polynomial such that $T_Q(\mathcal{P}_n) \subset \mathcal{P}_n$.

Application

Consider the autonomous evolution equation $u_t = Q[u]$ where $T_Q(p(x)) = \sum_{i=0}^{n} Q_i(C_0, \ldots, C_n) x^i$, $p(x) = C_0 + \cdots + C_n x^n$.

Use the solution ansatz $u(t, x) = \sum_{i=0}^{n} C_i(t) x^i$. The PDE reduces to the ODE $C_i'(t) = Q_i(C_0, \ldots, C_n)$.

David Gómez-Ullate, Niky Kamran, Robert Milson

Invariant polynomial subspaces
Non-linear separation of variables

Problem

Fix n and consider $\mathcal{P}_n(x)$. Find all translation-invariant differential operators $T_Q[u] := Q(u_0, u_1, \ldots, u_n)$, where Q is a quadratic polynomial such that $T_Q(\mathcal{P}_n) \subset \mathcal{P}_n$.

Application

Consider the autonomous evolution equation $u_t = Q[u]$ where $T_Q(p(x)) = \sum_{i=0}^{n} Q_i(C_0, \ldots, C_n)x^i$, $p(x) = C_0 + \cdots + C_n x^n$.
Non-linear separation of variables

Problem

Fix \(n \) and consider \(\mathcal{P}_n(x) \). Find all translation-invariant differential operators \(T_Q[u] := Q(u_0, u_1, \ldots, u_n) \), where \(Q \) is a quadratic polynomial such that \(T_Q(\mathcal{P}_n) \subset \mathcal{P}_n \).

Application

- Consider the autonomous evolution equation \(u_t = Q[u] \) where \(T_Q(p(x)) = \sum_{i=0}^{n} Q_i(C_0, \ldots, C_n)x^i \), \(p(x) = C_0 + \cdots + C_nx^n \)
- Use the solution ansatz \(u(t, x) = \sum_{i=0}^{n} C_i(t)x^i \).
 The PDE reduces to the ODE \(C'_i(t) = Q_i(C_0, \ldots, C_n) \)
Non-linear separation of variables

Problem

Fix n and consider $\mathcal{P}_n(x)$. Find all translation-invariant differential operators $T_Q[u] := Q(u_0, u_1, \ldots, u_n)$, where Q is a quadratic polynomial such that $T_Q(\mathcal{P}_n) \subset \mathcal{P}_n$.

Application

- Consider the autonomous evolution equation $u_t = Q[u]$ where $T_Q(p(x)) = \sum_{i=0}^{n} Q_i(C_0, \ldots, C_n)x^i$, $p(x) = C_0 + \cdots + C_nx^n$
- Use the solution ansatz $u(t, x) = \sum_{i=0}^{n} C_i(t)x^i$.
 The PDE reduces to the ODE $C_i'(t) = Q_i(C_0, \ldots, C_n)$
Non-linear separation of variables

Problem

Fix \(n \) and consider \(\mathcal{P}_n(x) \). Find all translation-invariant differential operators \(T_Q[u] := Q(u_0, u_1, \ldots, u_n) \), where \(Q \) is a quadratic polynomial such that \(T_Q(\mathcal{P}_n) \subset \mathcal{P}_n \).

Application

- Consider the autonomous evolution equation \(u_t = Q[u] \) where
 \(T_Q(p(x)) = \sum_{i=0}^{n} Q_i(C_0, \ldots, C_n)x^i \), \(p(x) = C_0 + \cdots + C_nx^n \)
- Use the solution ansatz \(u(t, x) = \sum_{i=0}^{n} C_i(t)x^i \).
The PDE reduces to the ODE \(C'_i(t) = Q_i(C_0, \ldots, C_n) \)
Fix n and consider $\mathcal{P}_n(x)$. Let $T_Q[u] := Q(x, u_0, u_1, \ldots, u_n)$ be a differential operator, polynomial in x and derivatives $u_j = u^{(j)}(x)$. Say that T has deficiency m if $T(\mathcal{P}_n) \subset \mathcal{P}_{n-m}$ and $T(\mathcal{P}_n) \not\subset \mathcal{P}_{n-m-1}$. Say that monomial deficiency is k if each term has deficiency k.

Observation: $m \geq k$. Consider $T[u] = 3u_2^2 - 4u_0u_2$ acting on \mathcal{P}_4. Monomial deficiency is -2. However, $T(\mathcal{P}_4) \subset \mathcal{P}_4$ (leading terms annihilated). Therefore, actual deficiency is 0.
Definition

Fix n and consider $\mathcal{P}_n(x)$. Let $T_Q[u] := Q(x, u_0, u_1, \ldots, u_n)$ be a differential operator, polynomial in x and derivatives $u_j = u^{(j)}(x)$. Say that T has deficiency m if $T(\mathcal{P}_n) \subset \mathcal{P}_{n-m}$ and $T(\mathcal{P}_n) \varsubsetneq \mathcal{P}_{n-m-1}$. Say that monomial deficiency is k if each term has deficiency k.
Definition

Fix n and consider $\mathcal{P}_n(x)$. Let $T_Q[u] := Q(x, u_0, u_1, \ldots, u_n)$ be a differential operator, polynomial in x and derivatives $u_j = u^{(j)}(x)$. Say that T has deficiency m if $T(\mathcal{P}_n) \subset \mathcal{P}_{n-m}$ and $T(\mathcal{P}_n) \not\subset \mathcal{P}_{n-m-1}$. Say that monomial deficiency is k if each term has deficiency k.

Observation: $m \geq k$

Consider $T[u] = 3u_1^2 - 4u_0u_2$ acting on \mathcal{P}_4. Monomial deficiency is -2. However, $T(\mathcal{P}_4) \subset \mathcal{P}_4$ (leading terms annihilated). Therefore, actual deficiency is 0.
Deficiency

Definition

Fix \(n \) and consider \(P_n(x) \). Let \(T_Q[u] := Q(x, u_0, u_1, \ldots, u_n) \) be a differential operator, polynomial in \(x \) and derivatives \(u_j = u^{(j)}(x) \). Say that \(T \) has deficiency \(m \) if \(T(P_n) \subset P_{n-m} \) and \(T(P_n) \subsetneq P_{n-m-1} \). Say that monomial deficiency is \(k \) if each term has deficiency \(k \).

Observation: \(m \geq k \)

Consider \(T[u] = 3u_1^2 - 4u_0u_2 \) acting on \(P_4 \). Monomial deficiency is \(-2\). However, \(T(P_4) \subset P_4 \) (leading terms annihilated). Therefore, actual deficiency is 0.
Definition

Fix n and consider $\mathcal{P}_n(x)$. Let $T_Q[u] := Q(x, u_0, u_1, \ldots, u_n)$ be a differential operator, polynomial in x and derivatives $u_j = u^{(j)}(x)$. Say that T has deficiency m if $T(\mathcal{P}_n) \subset \mathcal{P}_{n-m}$ and $T(\mathcal{P}_n) \subsetneq \mathcal{P}_{n-m-1}$. Say that monomial deficiency is k if each term has deficiency k.

Observation: $m \geq k$

Consider $T[u] = 3u_1^2 - 4u_0u_2$ acting on \mathcal{P}_4. Monomial deficiency is -2. However, $T(\mathcal{P}_4) \subset \mathcal{P}_4$ (leading terms annihilated). Therefore, actual deficiency is 0.
Fix n and consider $\mathcal{P}_n(x)$. Let $T_Q[u] := Q(x, u_0, u_1, \ldots, u_n)$ be a differential operator, polynomial in x and derivatives $u_j = u^{(j)}(x)$. Say that T has deficiency m if $T(\mathcal{P}_n) \subset \mathcal{P}_{n-m}$ and $T(\mathcal{P}_n) \not\subset \mathcal{P}_{n-m-1}$. Say that monomial deficiency is k if each term has deficiency k.

Observation: $m \geq k$

Consider $T[u] = 3u_1^2 - 4u_0u_2$ acting on \mathcal{P}_4. Monomial deficiency is -2. However, $T(\mathcal{P}_4) \subset \mathcal{P}_4$ (leading terms annihilated). Therefore, actual deficiency is 0.
Algebra of differential polynomials

Gradings: $\ell =$ deg. nonlinearity, $k =$ mon. deficiency, $m =$ deficiency

$\mathcal{T} = \mathbb{R}[x, u_0, u_1, \ldots, u_n]$ \quad (n is fixed)
Algebra of differential polynomials

Gradings: $\ell =$ deg. nonlinearity, $k =$ mon. deficiency, $m =$ deficiency

- $\mathcal{I} = \mathbb{R}[x, u_0, u_1, \ldots, u_n]$ (n is fixed)
 $$= \bigoplus_{\ell=0}^{\infty} \mathcal{I}_\ell$$

- $\mathcal{I}_\ell = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_\ell} \mid 0 \leq j < \infty\}.$
Algebra of differential polynomials

Gradings: \(\ell = \) deg. nonlinearity, \(k = \) mon. deficiency, \(m = \) deficiency

- \(\mathcal{T} = \mathbb{R}[x, u_0, u_1, \ldots, u_n] \) (\(n \) is fixed)
 \[
 = \bigoplus_{\ell=0}^{\infty} \mathcal{T}_\ell = \bigoplus_{\ell,k=0}^{\infty} \mathcal{T}_{\ell,k}
 \]
- \(\mathcal{T}_\ell = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_\ell} \mid 0 \leq j < \infty\} \).
- \(\mathcal{T}_{\ell,k} = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_\ell} \mid \text{wt} = k\} \), \(\text{wt}(u_i) = n - i \), \(\text{wt}(x) = 1 \).
Gradings: $\ell = \text{deg. nonlinearity}$, $k = \text{mon. deficiency}$, $m = \text{deficiency}$

- $T = \mathbb{R}[x, u_0, u_1, \ldots, u_n]$ (n is fixed)

 $= \bigoplus_{\ell=0}^{\infty} T_{\ell} = \bigoplus_{\ell=0}^{\infty} T_{\ell,k} = \bigoplus_{\ell=0}^{\infty} \bigoplus_{m=0}^{k} T_{\ell,k,m}$

- $T_{\ell} = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_{\ell}} \mid 0 \leq j < \infty\}$.

- $T_{l,k} = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_{\ell}} \mid \text{wt}(x) = k\}$, $\text{wt}(u_i) = n - i$, $\text{wt}(x) = 1$.

- $T_{l,k,m} = \text{span}\{x^m v_{i_1} \cdots v_{i_{\ell}} \mid \text{wt}(x) = k\}$ where

 $v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}$, \quad $u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}$, \quad $j = 0, \ldots, n$

 $\text{wt}(v_j) = n - j$ \quad $v_j : x^i \mapsto \delta^i_j$ \quad (Maximal deficiency)
Algebra of differential polynomials

Gradings: $\ell = \text{deg. nonlinearity}, k = \text{mon. deficiency}, m = \text{deficiency}$

- $\mathcal{T} = \mathbb{R}[x, u_0, u_1, \ldots, u_n]$ \hspace{0.5cm} (n is fixed)
 \hspace{2.5cm} = \bigoplus_{\ell=0}^{\infty} \mathcal{T}_\ell = \bigoplus_{\ell,k=0}^{\infty} \mathcal{T}_{\ell,k} = \bigoplus_{\ell,k=0}^{\infty} \bigoplus_{m=0}^{k} \mathcal{T}_{\ell,k,m}$

- $\mathcal{T}_\ell = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_\ell} \mid 0 \leq j < \infty\}$.

- $\mathcal{T}_{l,k} = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_\ell} \mid \text{wt} = k\}$, \hspace{0.5cm} $\text{wt}(u_i) = n - i$, \hspace{0.5cm} $\text{wt}(x) = 1$.

- $\mathcal{T}_{l,k,m} = \text{span}\{x^m v_{i_1} \cdots v_{i_\ell} \mid \text{wt} = k\}$ where
 \[v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}, \quad u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}, \quad j = 0, \ldots, n \]
 \[\text{wt}(v_j) = n - j \quad v_j : x^i \mapsto \delta^i_j \quad \text{(Maximal deficiency)} \]
Algebra of differential polynomials

Gradings: $\ell = \deg \text{ nonlinearity, } k=\text{mon. deficiency, } m=\text{deficiency}$

- $T = \mathbb{R}[x, u_0, u_1, \ldots, u_n]$ (n is fixed)

 $= \bigoplus_{\ell=0}^{\infty} T_{\ell} = \bigoplus_{\ell,k=0}^{\infty} T_{\ell,k} = \bigoplus_{\ell,k=0}^{\infty} \bigoplus_{m=0}^{k} T_{\ell,k,m}$

- $T_{\ell} = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_{\ell}} \mid 0 \leq j < \infty\}$.

- $T_{l,k} = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_{\ell}} \mid \text{wt} = k\}$, \quad $\text{wt}(u_i) = n - i$, \quad $\text{wt}(x) = 1$.

- $T_{l,k,m} = \text{span}\{x^m v_{i_1} \cdots v_{i_{\ell}} \mid \text{wt} = k\}$ where

 \[v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}, \quad u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}, \quad j = 0, \ldots, n \]

 $\text{wt}(v_j) = n - j$ \quad $v_j : x^i \mapsto \delta^i_j$ \quad (Maximal deficiency)
Algebra of differential polynomials

Gradings: $\ell = \text{deg. nonlinearity}$, $k = \text{mon. deficiency}$, $m = \text{deficiency}$

- $\mathcal{T} = \mathbb{R}[x, u_0, u_1, \ldots, u_n] \quad (n \text{ is fixed})$
- $\mathcal{T} = \bigoplus_{\ell=0}^{\infty} \mathcal{T}_\ell = \bigoplus_{\ell,k=0}^{\infty} \mathcal{T}_{\ell,k} = \bigoplus_{\ell,k=0}^{\infty} \bigoplus_{m=0}^{k} \mathcal{T}_{\ell,k,m}$
- $\mathcal{T}_\ell = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_\ell} \mid 0 \leq j < \infty\}$.
- $\mathcal{T}_{l,k} = \text{span}\{x^j u_{i_1} u_{i_2} \cdots u_{i_\ell} \mid \text{wt} = k\}$, $\text{wt}(u_i) = n - i$, $\text{wt}(x) = 1$.
- $\mathcal{T}_{l,k,m} = \text{span}\{x^m v_{i_1} \cdots v_{i_\ell} \mid \text{wt} = k\}$ where
 \[
 v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}, \quad u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}, \quad j = 0, \ldots, n
 \]
 \[
 \text{wt}(v_j) = n - j \quad v_j : x^i \mapsto \delta_{ij} \quad (\text{Maximal deficiency})
 \]

Proposition

Let $T = P(x, u_0, \ldots, u_n) = Q(x, v_0, \ldots, v_n)$. Then,

\[
\text{deficiency } T = n - \text{deg}_x Q.
\]
Autonomous (translation-invariant) operators

Definition

\[v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}, \quad u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}, \quad j = 0, \ldots, n \]

\[I_{n-j} = \sum_{i=0}^{n-j} (-1)^i \frac{u_{i+j}}{i!} \left(\frac{u_{n-1}}{u_n} \right)^i \]
Autonomous (translation-invariant) operators

Definition

\[v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}, \quad u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}, \quad j = 0, \ldots, n \]

\[l_{n-j} = \sum_{i=0}^{n-j} (-1)^i \frac{u_{i+j}}{i!} \left(\frac{u_{n-1}}{u_n} \right)^i = \sum_{i=0}^{n-j} (-1)^i \frac{v_{i+j}}{i!} \left(\frac{v_{n-1}}{v_n} \right)^i \]
Autonomous (translation-invariant) operators

Definition

\[v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}, \quad u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}, \quad j = 0, \ldots, n \]

\[l_{n-j} = \sum_{i=0}^{n-j} (-1)^i \frac{u_{i+j}}{i!} \left(\frac{u_{n-1}}{u_n} \right)^i = \sum_{i=0}^{n-j} (-1)^i \frac{v_{i+j}}{i!} \left(\frac{v_{n-1}}{v_n} \right)^i \]

Example: \(n = 4 \)

\[v_4 = u_4 \]
\[v_3 = u_3 - xu_4 \]
\[v_2 = u_2 - xu_3 + \frac{x^2}{2} u_4 \]
\[v_1 = u_1 - xu_2 + \frac{x^2}{2} u_3 - \frac{x^3}{6} u_4 \]
\[v_0 = u_0 - xu_1 + \frac{x^2}{2} u_2 - \frac{x^3}{6} u_3 + \frac{x^4}{24} u_4 \]

\[l_0 = u_4 \]
\[l_1 = u_3 - \xi u_4 = 0, \quad \xi = \frac{u_3}{u_4} = x + \frac{v_3}{v_4} \]
\[l_2 = u_2 - \xi u_3 + \frac{\xi^2}{2} u_4 \]
\[l_3 = u_1 - \xi u_2 + \frac{\xi^2}{2} u_3 - \frac{\xi^3}{6} u_4 \]
\[l_4 = u_0 - xu_1 + \frac{\xi^2}{2} u_2 - \frac{\xi^3}{6} u_3 + \frac{\xi^4}{24} u_4 \]
Definition

\[v_j = \sum_{i=0}^{n-j} (-1)^i \frac{x^i}{i!} u_{i+j}, \quad u_j = \sum_{i=0}^{n-j} \frac{x^i}{i!} v_{i+j}, \quad j = 0, \ldots, n \]

\[l_{n-j} = \sum_{i=0}^{n-j} (-1)^i \frac{u_{i+j}}{i!} \left(\frac{u_{n-1}}{u_n} \right)^i = \sum_{i=0}^{n-j} (-1)^i \frac{v_{i+j}}{i!} \left(\frac{v_{n-1}}{v_n} \right)^i \]

Example: \(n = 4 \)

\[v_4 = u_4 \]

\[v_3 = u_3 - xu_4 \]

\[v_2 = u_2 - xu_3 + \frac{1}{2} u_4 \]

\[v_1 = u_1 - xu_2 + \frac{1}{2} u_3 - \frac{1}{6} u_4 \]

\[v_0 = u_0 - xu_1 + \frac{1}{2} u_2 - \frac{1}{6} u_3 + \frac{1}{24} u_4 \]

\[l_0 = u_4 \]

\[l_1 = u_3 - \xi u_4 = 0, \quad \xi = \frac{u_3}{u_4} = x + \frac{v_3}{v_4} \]

\[l_2 = u_2 - \xi u_3 + \frac{\xi^2}{2} u_4 \]

\[l_3 = u_1 - \xi u_2 + \frac{\xi^2}{2} u_3 - \frac{\xi^3}{6} u_4 \]

\[l_4 = u_0 - xu_1 + \frac{\xi^2}{2} u_2 - \frac{\xi^3}{6} u_3 + \frac{\xi^4}{24} u_4 \]

Proposition

The operators \(l_j \) are autonomous (no \(x \) variable) and maximal deficiency (turn all polynomials into constants). Let \(T = P(u_0, \ldots, u_n) = Q(x, v_0, \ldots, v_n) \)

Then \(T = Q(\xi, l_n, \ldots, l_2, 0, l_0) \) and deficiency \(T = n - \deg_{\xi} Q \).
Autonomous operators: an example

Problem

Fix $n = 4$ and consider $T = C_{02}u_0u_2 + C_{11}u_1^2$

T is quadratically non-linear, $\ell = 2$, and has monomial deficiency $k = -2$.

Find conditions on C_{02}, C_{11} s.t. deficiency $T \geq 0$, i.e. so that T preserves \mathcal{P}_4.
Autonomous operators: an example

Problem

Fix $n = 4$ and consider $T = C_{02}u_0u_2 + C_{11}u_1^2$

T is quadratically non-linear, $\ell = 2$, and has monomial deficiency $k = -2$.

Find conditions on C_{02}, C_{11} such that deficiency $T \geq 0$, i.e. so that T preserves P_4.

Solution

Rewrite T using ξ, I_4, I_3, I_2, I_0

$v_4 = u_4$
$v_3 = u_3 - xu_4$
$v_2 = u_2 - xu_3 + \frac{x^2}{2}u_4$
$v_1 = u_1 - xu_2 + \frac{x^2}{2}u_3 - \frac{x^3}{6}u_4$
$v_0 = u_0 - xu_1 + \frac{x^2}{2}u_2 - \frac{x^3}{6}u_3 + \frac{x^4}{24}u_4$

$l_0 = u_4$
$l_1 = u_3 - \xi u_4 = 0, \quad \xi = \frac{u_3}{u_4} = x + \frac{v_3}{v_4}$
$l_2 = u_2 - \xi u_3 + \frac{\xi^2}{2}u_4$
$l_3 = u_1 - \xi u_2 + \frac{\xi^2}{2}u_3 - \frac{\xi^3}{6}u_4$
$l_4 = u_0 - xu_1 + \frac{\xi^2}{2}u_2 - \frac{\xi^3}{6}u_3 + \frac{\xi^4}{24}u_4$
Autonomous operators: an example

Problem

Fix $n = 4$ and consider $T = C_{02} u_0 u_2 + C_{11} u_1^2$

T is quadratically non-linear, $\ell = 2$, and has monomial deficiency $k = -2$.

Find conditions on C_{02}, C_{11} s.t. deficiency $T \geq 0$, i.e. so that T preserves P_4.

Solution

Rewrite T using ξ, l_4, l_3, l_2, l_0

<table>
<thead>
<tr>
<th>v_4</th>
<th>$l_0 = u_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_3</td>
<td>$l_1 = u_3 - \xi u_4 = 0$, $\xi = \frac{u_3}{u_4} = x + \frac{v_3}{v_4}$</td>
</tr>
<tr>
<td>v_2</td>
<td>$l_2 = u_2 - \xi u_3 + \frac{\xi^2}{2} u_4$</td>
</tr>
<tr>
<td>v_1</td>
<td>$l_3 = u_1 - \xi u_2 + \frac{\xi^2}{2} u_3 - \frac{\xi^3}{6} u_4$</td>
</tr>
<tr>
<td>v_0</td>
<td>$l_4 = u_0 - xu_1 + \frac{\xi^2}{2} u_2 - \frac{\xi^3}{6} u_3 + \frac{\xi^4}{24} u_4$</td>
</tr>
</tbody>
</table>

$C_{02} u_0 u_2 + C_{11} u_1^2 = \frac{1}{144} (3C_{02} + 4C_{11}) v_4^2 x^6 + \frac{1}{24} (3C_{02} + 4C_{11}) v_3 v_4 x^5 + \text{l.o.t.}$
Autonomous operators: an example

Problem

Fix $n = 4$ and consider $T = C_{02} u_0 u_2 + C_{11} u_1^2$

T is quadratically non-linear, $\ell = 2$, and has monomial deficiency $k = -2$.

Find conditions on C_{02}, C_{11} s.t. deficiency $T \geq 0$, i.e. so that T preserves P_4.

Solution

Rewrite T using ξ, l_4, l_3, l_2, l_0

\[
\begin{align*}
 v_4 &= u_4 \\
 v_3 &= u_3 - xu_4 \\
 v_2 &= u_2 - xu_3 + \frac{x^2}{2} u_4 \\
 v_1 &= u_1 - xu_2 + \frac{x^2}{2} u_3 - \frac{x^3}{6} u_4 \\
 v_0 &= u_0 - xu_1 + \frac{x^2}{2} u_2 - \frac{x^3}{6} u_3 + \frac{x^4}{24} u_4 \\
 l_0 &= u_4 \\
 l_1 &= u_3 - \xi u_4 = 0, \quad \xi = \frac{u_3}{u_4} = x + \frac{v_3}{v_4} \\
 l_2 &= u_2 - \xi u_3 + \frac{\xi^2}{2} u_4 \\
 l_3 &= u_1 - \xi u_2 + \frac{\xi^2}{2} u_3 - \frac{\xi^3}{6} u_4 \\
 l_4 &= u_0 - xu_1 + \frac{\xi}{2} u_2 - \frac{\xi^3}{6} u_3 + \frac{\xi^4}{24} u_4
\end{align*}
\]

$C_{02} u_0 u_2 + C_{11} u_1^2 = \frac{1}{144} (3 C_{02} + 4 C_{11}) v_4^2 x^6 + \frac{1}{24} (3 C_{02} + 4 C_{11}) v_3 v_4 x^5 + \text{l.o.t.}$

$= \frac{1}{144} (3 C_{02} + 4 C_{11}) l_0^2 \xi^6 + 0 \xi^5 + \text{l.o.t.}$
Autonomous operators: an example

Problem

Fix $n = 4$ and consider $T = C_{02} u_0 u_2 + C_{11} u_1^2$

T is quadratically non-linear, $\ell = 2$, and has monomial deficiency $k = -2$.

Find conditions on C_{02}, C_{11} s.t. deficiency $T \geq 0$, i.e. so that T preserves \mathcal{P}_4.

Solution

Rewrite T using ξ, l_4, l_3, l_2, l_0

$v_4 = u_4$
$v_3 = u_3 - xu_4$
$v_2 = u_2 - xu_3 + \frac{x^2}{2} u_4$
$v_1 = u_1 - xu_2 + \frac{x^2}{2} u_3 - \frac{x^3}{6} u_4$
$v_0 = u_0 - xu_1 + \frac{x^2}{2} u_2 - \frac{x^3}{6} u_3 + \frac{x^4}{24} u_4$

$l_0 = u_4$
$l_1 = u_3 - \xi u_4 = 0, \quad \xi = \frac{u_3}{u_4} = x + \frac{v_3}{v_4}$
$l_2 = u_2 - \xi u_3 + \frac{\xi^2}{2} u_4$
$l_3 = u_1 - \xi u_2 + \frac{\xi^2}{2} u_3 - \frac{\xi^3}{6} u_4$
$l_4 = u_0 - xu_1 + \frac{\xi^2}{2} u_2 - \frac{\xi^3}{6} u_3 + \frac{\xi^4}{24} u_4$

$C_{02} u_0 u_2 + C_{11} u_1^2 = \frac{1}{144} (3C_{02} + 4C_{11}) v_4^2 x^6 + \frac{1}{24} (3C_{02} + 4C_{11}) v_3 v_4 x^5 + \text{l.o.t.}$

$= \frac{1}{144} (3C_{02} + 4C_{11}) l_0^2 \xi^6 + 0 \xi^5 + \text{l.o.t.}$

Conclusion: T preserves \mathcal{P}_4 iff $T \propto 4u_0 u_2 - 3u_1^2$
Autonomous, quadratically non-linear operators

- Fix n. Set $\mathcal{Q} := \bigoplus_{k=-n}^{n} \mathcal{Q}_k$, $\mathcal{Q}_k := \langle u_i u_j : i + j = n + k, \ 0 \leq i, j \leq n \rangle$.
Autonomous, quadratically non-linear operators

- Fix n. Set $Q := \bigoplus_{k=-n}^{n} Q_k$, $Q_k := \langle u_i u_j : i + j = n + k, \ 0 \leq i, j \leq n \rangle$.
- Fix monomial deficiency k and order $\left\lceil \frac{n+k}{2} \right\rceil \leq r \leq \min(n, n+k)$.
- Set $Q_{k,r} := \sum_{i=k+n-r}^{r} (-1)^i \binom{i-k+1}{n-r+1} \binom{n-i}{n-r} u_i u_{n+k-i}$.
Autonomous, quadratically non-linear operators

- Fix n. Set $Q := \bigoplus_{k=-n}^{n} Q_k$, $Q_k := \langle u_i u_j : i + j = n + k, 0 \leq i, j \leq n \rangle$.
- Fix monomial deficiency k and order $\left\lfloor \frac{n+k}{2} \right\rfloor \leq r \leq \min(n, n+k)$.
 Set $Q_{k,r} := \sum_{i=k+n-r}^{r} (-1)^i \binom{i-k+1}{n-r+1} \binom{n-i}{n-r} u_i u_{n+k-i}$.

Theorem (G-U,K,M)

- deficiency $Q_{k,r} = m(k, r) = k + 2(r - r_{\min}^{(k)}) \geq k$.
Autonomous, quadratically non-linear operators

- Fix n. Set $Q := \bigoplus_{k=-n}^{n} Q_k$, $Q_k := \langle u_i u_j : i + j = n + k, \ 0 \leq i, j \leq n \rangle$.
- Fix monomial deficiency k and order $\left\lfloor \frac{n+k}{2} \right\rfloor \leq r \leq \min(n, n+k)$.
 - Set $Q_{k,r} := \sum_{i=k+n-r}^{l} (-1)^i \binom{i-k+1}{n-r+1} \binom{n-r}{n} u_i u_{n+k-i}$.

Theorem (G-U,K,M)

- deficiency $Q_{k,r} = m(k, r) = k + 2(r - r_{\text{min}}^{(k)}) \geq k$.
- $Q_k = \langle Q_{k,r} : r_{\text{min}}^{(k)} \leq r \leq r_{\text{max}}^{(k)} \rangle$.
Autonomous, quadratically non-linear operators

- Fix n. Set $Q := \bigoplus_{k=-n}^{n} Q_k$, $Q_k := \langle u_i u_j : i + j = n + k, 0 \leq i, j \leq n \rangle$.
- Fix monomial deficiency k and order $\left\lceil \frac{n+k}{2} \right\rceil \leq r \leq \min(n, n+k)$.

 Set $Q_{k,r} := \sum_{i=k+n-r}^{r} (-1)^i \binom{i-k+1}{n-r+1} \binom{n-i}{n-r} u_i u_{n+k-i}$.

Theorem (G-U,K,M)

- deficiency $Q_{k,r} = m(k,r) = k + 2(r - r_{\min}^{(k)}) \geq k$.
- $Q_k = \langle Q_{k,r} : r_{\min}^{(k)} \leq r \leq r_{\max}^{(k)} \rangle$.

<table>
<thead>
<tr>
<th>k</th>
<th>$Q_{k,r}$</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>u_0^2</td>
<td>-4</td>
</tr>
<tr>
<td>-3</td>
<td>$u_0 u_1$</td>
<td>-3</td>
</tr>
<tr>
<td>-2</td>
<td>u_1^2</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>$3u_1^2 - 4u_0 u_2$</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>$u_1 u_2$</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>$2u_2^2 - 3u_1 u_3$</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>$u_2 u_3$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$u_2^2 - 3u_1 u_4$</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>$u_3 u_4$</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>u_4^2</td>
<td>4</td>
</tr>
</tbody>
</table>

Quadratic autonomous operators acting on \mathcal{P}_4
Concluding remarks

- Quasi-exact solvability is more general than the sl_2 class.
Concluding remarks

- Quasi-exact solvability is more general than the sl$_2$ class.
- Just what is quasi-exact solvability? We can show that a potential is QES.
Concluding remarks

- Quasi-exact solvability is more general than the sl_2 class.
- Just what is quasi-exact solvability? We can show that a potential is QES. Can we prove that a potential is not QES?
Concluding remarks

- Quasi-exact solvability is more general than the \mathfrak{sl}_2 class.
- Just what is quasi-exact solvability? We can show that a potential is QES. Can we prove that a potential is not QES?
- More evidence for: “Integrable \Rightarrow solvable”.

Thank you for your attention.

David Gómez-Ullate, Niky Kamran, Robert Milson
Concluding remarks

- Quasi-exact solvability is more general than the sl$_2$ class.
- Just what is quasi-exact solvability? We can show that a potential is QES. Can we prove that a potential is not QES?
- More evidence for: “Integrable \Rightarrow solvable”.
- Are all elliptic finite-gap potentials QES? How robust is the relationship between quasi-exact solvability and the finite-gap property?
Quasi-exact solvability is more general than the sl$_2$ class.

Just what is quasi-exact solvability? We can show that a potential is QES. Can we prove that a potential is not QES?

More evidence for: “Integrable \Rightarrow solvable”.

Are all elliptic finite-gap potentials QES? How robust is the relationship between quasi-exact solvability and the finite-gap property?

Question: which non-linear autonomous operators preserve $\mathcal{T}_n = \langle e^{ikx} : -n \leq k \leq n \rangle$? Other finite-dimensional function spaces?
Concluding remarks

- Quasi-exact solvability is more general than the sl$_2$ class.
- Just what is quasi-exact solvability? We can show that a potential is QES. Can we prove that a potential is not QES?
- More evidence for: \textbf{“Integrable \Rightarrow solvable”}.
- Are all elliptic finite-gap potentials QES? How robust is the relationship between quasi-exact solvability and the finite-gap property?
- Question: which non-linear autonomous operators preserve $\mathcal{T}_n = \langle e^{ikx} : -n \leq k \leq n \rangle$? Other finite-dimensional function spaces?
- What about geometry? What is the equivalence class with respect to point transformations?
Concluding remarks

- Quasi-exact solvability is more general than the \mathfrak{sl}_2 class.
- Just what is quasi-exact solvability? We can show that a potential is QES. Can we prove that a potential is not QES?
- More evidence for: “Integrable \Rightarrow solvable”.
- Are all elliptic finite-gap potentials QES? How robust is the relationship between quasi-exact solvability and the finite-gap property?
- Question: which non-linear autonomous operators preserve $T_n = \langle e^{ikx} : -n \leq k \leq n \rangle$? Other finite-dimensional function spaces?
- What about geometry? What is the equivalence class with respect to point transformations?
- Thank you for your attention.